
Type-based amortised heap-space analysis

Martin Hofmann1 and Steffen Jost2

1 LMU München, Institut für Informatik
2 University of St Andrews, School of Computer Science

Abstract. We present a type system for a compile-time analysis of heap-
space requirements of Java style object-oriented programs with explicit
deallocation.
Our system is based on an amortised complexity analysis: the data is
arbitrarily assigned a potential related to its size and layout; allocations
must be ”payed for” from this potential. The potential of each input then
furnishes an upper bound on the heap space usage for the computation
on this input.
We successfully treat inheritance, downcast, update and aliasing. Ex-
ample applications for the analysis include destination-passing style and
doubly-linked lists.
Type inference is explicitly not included; the contribution lies in the sys-
tem itself and the nontrivial soundness theorem. This extended abstract
elides most technical lemmas and proofs, even nontrivial ones, due to
space limitations. A full version is available at the authors’ web pages.

1 Introduction

Consider a Java-like class-based object-oriented language without garbage col-
lection, but with explicit deallocation in the style of C’s free(). Such programs
may be evaluated by maintaining a set of free memory units, the freelist. Upon
object creation a number of heap units required to store the object is taken from
the 3 provided it contains enough units; each deallocated heap unit is returned
to the freelist. An attempt to create a new object with an insufficient freelist
causes unsuccessful abortion of the program. This also happens upon attempts
to access a deallocated object via a stale pointer.

It is now natural to ask what initial size the freelist must have so that a
given program may be executed without causing unsuccessful abortion due to
penury of memory. If we know such a bound on the initial freelist size we can
then execute our program within a fixed amount of memory which can be useful
in situations where memory is a scarce resource like embedded controllers or
SIM cards. It may also be useful to calculate such bounds for individual parts of
a program so that several applications can be run simultaneously even if their
maximum memory needs exceed the available capacity [6].

Typically, the required initial freelist size will depend on the data, for example
the size of some initial data structure, e.g., a phone book or an HTML document.
We therefore seek to determine an upper bound on the required freelist size as
a function of the input size. We propose to approach this input dependency by
a type-based version of amortised analysis in the sense of Tarjan [17].

Amortised analysis In amortised analysis data structure(s) are assigned an
arbitrary nonnegative number, the potential. The amortised cost of an operation
is its total cost (time or space) plus the difference in potential before and after the
operation. The sum of the amortised costs plus the potential of the initial data
structure then bounds (from above) the actual cost of a sequence of operations. If
the potential is cleverly chosen then the amortised cost of individual operations
is zero or a constant even when their actual cost is difficult to determine. The
simplest example is an implementation of a queue using two stacks A and B.
Enqueuing is performed on A, dequeuing is performed on B unless B is empty
in which case the whole contents of A are moved to B prior to dequeuing. Thus,
dequeuing sometimes takes time proportional to the size of A. If we decree that
the size of A is the potential of the data then enqueuing has an amortised cost
of 2 (one for the actual cost, one for the increase in potential). Dequeuing on the
other hand has an amortised cost of 1 since the cost of moving A over to (the
empty stack) B cancels out against the decrease in potential. Thus, the actual
cost of a sequence of operations is bounded by the initial size of A plus twice the
number of enqueues plus the number of dequeues. In this case, one can also see
this directly by observing that each element is moved exactly three times: once
into A, once from A to B, once out of B.

Type-based potential In the above queue example, both stacks have the same
type, but each element of A contributes 1 to the overall potential, whereas each
element of B contributes a potential of 0. We recorded this information within
the type by adding a number to each type constructor in our previous work [9].
However, object-oriented languages require a more complex approach due to
aliasing and inheritance: Where in a purely functional setting a refined type
might consist of a simple type together with a number a refined (class) type will
consist of a number together with refined types for the attributes and methods.
In order to break the recursive nature of this requirement we resort to explicit
names for refined types as is common practice in Java (though not in OCaml):
we introduce a set of names, the views. A view on an object shall determine its
contribution to the potential. This is formally described in Section 3, but we
shall convey a good intuition here. A refined type then consists of a class C and
a view r and is written Cr. We sometimes conveniently use a refined type where
only a class or a view is needed.

The fact that views are in some sense orthogonal to class types caters for
typecasting. If, e.g., x has refined type Cr, then (D)x will have refined type Dr.3

The meaning of views is given by three maps ♦ defining potentials, A defining
views of attributes, and M defining refined method types. More precisely, ♦ :
Class × View → Q+ assigns each class its potential according to the employed
view. Next, A : Class×View×Field → View×View determines the refined types
of the fields. A different view may apply according to whether a field is read from

3 Peter Thiemann, Freiburg, independently and simultaneously used a similar ap-
proach in as yet unpublished work on a generic type-based analysis for Java. His
main application is conformance of XML-document generators to standards and his
treatment of aliasing is different from ours.

(get-view) or written to (set-view), hence the codomain View×View. Subtyping
of refined types is behavioural and covariant in the get-view and contravariant
in the set-view.

Finally, M : Class × View × Method → P(Views of Arguments → Effect ×
View of Result) assigns refined types and effects to methods. The effect is a
pair of numbers representing the potential consumed before and released after
method invocation. We allow polymorphism in the sense that, as implied by the
powerset symbol P one method may have more than one (or no) refined typing.

One and the same runtime object can have several refined types at once, since
it can be regarded through different views at the same time. In fact, each access
path leading from the current scope via field access to an object will determine
its individual view on the object by the repeated application of A. The overall
potential of a runtime configuration is the (possibly infinite) sum over all access
paths in scope that lead to an actual object. Thus, if an object has several
access paths leading to it (aliasing) it may make several contributions to the
total potential. Our typesystem has an explicit contraction rule: If a variable is
used more often, the associated potential is split by assigning different views to
each use. The potential also depends on the dynamic class types of each object.
However, our runtime model is the standard one which does not include any
view/potential related information.

Our main contribution is the proof that the total potential plus the heap used
never increases during execution. In other words, any object creation must be
paid for from the potential in scope and the potential of the initial configuration
furnishes an upper bound on the total heap consumption.

In this way, we can model data-dependent memory usage without manipulat-
ing functions and recurrences, as is the case in approaches based on sized types
and also without any alteration to the runtime model.

We will now describe our approach in more detail using three suggestive
examples: a copying function for lists, imperative append in destination passing
style, and doubly-linked lists. These examples show many of the salient features
of our methods: heap usage proportional to input size (the copying example),
correct accounting for aliasing (destination passing style), circular data (doubly-
linked lists). Especially the last example seems to go beyond the scope of current
methods based on sized types or similar.

Example: Copying singly-linked lists in an object-oriented style:
abstract class List { abstract List copy(); }

class Nil extends List { List copy() { return this; }}

class Cons extends List { int elem; List next;

List copy() { Cons res = new Cons(); res.elem = this.elem;

res.next = this.next.copy(); return res; }}

It is clear that the memory consumption of a call x.copy() will equal the length
of the list x. To calculate this formally we construct a view a which assigns to
List itself the potential 0, to Nil the potential 0 and to Cons the potential 1.
Another view is needed to describe the result of copy() for otherwise we could

repeatedly copy lists without paying for it. Thus, we introduce another view b
that assigns potential 0 to all classes. The complete specification of the two views
is shown here, together with other views used later:

♦(·) a b c d n
List 0 0 0 0 0
Nil 0 0 0 0 0
Cons 1 0 0 1 0

Consa Consb Consc Consd Consn

Aget(· , next) a b a n n
Aset(· , next) a b a a a

M
(
{Lista, Consa, Nila}, copy

)
= () 0/0−−−→b

(1.1)

The call x.copy() is well-typed and of type Listb if x has refined type Lista,
Nila or Consa. It is ill-typed if x has refined type, e.g., Listb. Its effect 0/0
will not decrement the freelist beyond the amount implicit in the potential of
x (which equals in this case the length of the list pointed to by x) and will not
return anything to the freelist beyond the amount implicit in the potential of
the result (which equals zero due to its refined type Listb). Thus, the typing
amounts to saying that the memory consumption of this call is equal to the
length of x.

Let us explain why the potential of x indeed equals its length. Suppose for
the sake of the example that x points to a list of length 2. The potential is worked
out as the sum over all access paths emanating from x and not leading to null
or being undefined. In this case, these access paths are p1 = x,p2 = x.next,
p3 = x.next.next. Each of these has a dynamic type: Cons for p1 and p2; Nil
for p3. Each of them also has a view worked out by chaining the view of x along
the get-views. Here it is view is a in each case. For each access paths we now
look up the potential annotation of its dynamic type under its view. It equals 1
in case of p1 and p2 given ♦(Lista) = 1 and 0 for p3 by ♦(Nila) = 0, yielding
a sum of 2. Notice that if the very same list had been accessed via a variable y
of type Listb the potential ascribed would have been 0.

The typing judgement The type system allows us to derive assertions of the
form Γ

m
m′ e : Cr where e is an expression or program phrase, C is a Java class,

r is a view (so Cr is a refined type). Γ maps variables occurring in e to refined
types; we often write Γx instead of Γ (x). Finally m, m′ are nonnegative numbers.
The meaning of such a judgement is as follows. If e terminates successfully in
some environment η and heap σ with unbounded memory resources available
then it will also terminate successfully with a bounded freelist of size at least m
plus the potential ascribed to η, σ with respect to the typings in Γ . Furthermore,
the freelist size upon termination will be at least m′ plus the potential of the
result with respect to the view r.

For the typing of copy() to be accepted we must derive the judgements

this:Nilc 0
0 eNil : Listb this:Consc 1

0 eCons : Listb (1.2)

where eNil and eCons are the bodies of copy in classes Nil and Cons, respectively.
View c is basically the view a with the toplevel potential 1 stripped off. In

exchange we get access to this toplevel potential in the form of the superscript 1
of the “turnstile”. This weaker typing of this allows us to read attributes from
this as if its typing were Lista but it precludes the use of any toplevel potential
which is right for otherwise there would be an unjustified duplication of potential.

Formally, this “stripping-off” is achieved through the coinductive definition
of a relation .(r |D) between views r and multisets of views D which asserts
that a variable of view r may be used multiple times provided the different
occurrences are given the views in D and it is this relation that appears as a
side condition to the typing rule for methods. Entry of a method body is the
only point were potential becomes available for use, but it can be used anywhere
inside the method’s body and even passed on to further method calls.

In particular for the views listed in (1.1), we have .(a |{d, c}),
.(b |{b, b, . . . }), and .(a |{a, n, n . . . }), but neither .(a |{a, a}) (because 1+1 6=
1) nor .(c |{c, c}) (because the get-view of next in c is a), nor .(a |{a, b}) (be-
cause the set-view of next in b is not a, but the set-view has to be preserved
upon sharing).

Typing “copy” Let us now see how we can derive the required typings in (1.2).
The typing of eCons works as follows. The creation of a new object of class Consb

incurs a cost of 1 (zero potential plus one physical heap unit – note that the
physical cost of object creation can be chosen arbitrarily for each class to suit
the applicable memory model). Thus, it remains to justify

this:Consc, res:Consb 0
0

res.elem=this.elem; res.next=this.next.copy(); return res;

The threefold use of res in this term relies on the sharing relation .(b |{b, b, b}).
Let us now consider the assignments in order. The first assignment being of
scalar type is trivial. The set-view of res.next is b but so is the view of
this.next.copy() thus justifying the second assignment. The view of res
equals the announced return view b so we are done.

The body eNil of copy() in Nil is simply return this;. The type of this
is Nilc which is unfortunately not a subtype of the required type Listb, which
we ignore here for the sake of simplicity. A proper way to avoid this problem
would be to have non-unique Nil objects for each list, which makes sense if the
Nil-node has a function. Otherwise one could abandon the Nil class and use a
null pointer instead, which would somehow defeat our example. A third solution
would be to include mechanisms for static objects in our theory.

Example: Destination Passing Style We augment List by two methods:
abstract void appAux(List y, Cons dest);

List append(List y) { Cons dest = new Cons(); this.appAux(y,dest);

List result = dest.next; free(dest); return result; }

The call this.appAux(y,dest) to be implemented in the subclasses Nil and
Cons should imperatively append y to this and place the result into the

dest.next. The point is that appAux admits a tail-recursive implementation
which corresponds to a while-loop.
/* In Nil */ void appAux(List y, Cons dest){ dest.next <- y; }

/* In Cons */ void appAux(List y, Cons dest){ dest.next <- this;

this.next.appAux(y, this); }

We propose the following refined typings for these newly introduced methods:

M(Lista, append) = Lista 1/1−−−→ Lista

M(Lista, appAux) = (Lista, Consn) 0/0−−−→ void

We focus here on the most interesting judgement

this:Lista, dest:Listn 0
0 dest.next<-this;this.next.appAux(y,this):void

Here we have decided not to glean any potential from this in the method body so
that this is available as of type Lista. We split this:Lista using .(a |{a, n})
and dest:Listn. The set-view of dest.next is a coinciding with the view of
this thus the assignment is justified. This example shows that the potential is
correctly chained through the appAux method despite of heavy aliasing.

Example: doubly-linked lists Our final example illustrates doubly-linked lists
which brings more aliasing and even circular data.
abstract class DList { }

class DNil extends DList{ }

class DCons extends DList{ Object elem; DList next; DList previous;

int getNext() { return this.next;}}

We would like to be able to implement methods toList() and toDList()
which non-destructively transform singly-linked lists into doubly-linked ones and
vice versa. To make this possible we need views on doubly-linked lists defined in
such a way that the potential of a doubly-linked list is proportional to its length.
This can be achieved as follows with two views q and r.

♦(·) q r
DList 0 0
DNil 0 0
DCons 1 0

DConsq DConsr

Aget(· , next) q r
Aset(· , next) q q
Aget(· , previous) r r
Aset(· , previous) r r

(1.3)

It is irrelevant what these views are at the other classes Nil, Cons, List.
The potential of a DListq equals its length, whereas the potential of a DListr

is zero. The potential is defined as an infinite sum ranging over all access paths,
i.e. p ∈ {next, previous}∗. However, due to the fact that field previous has
view r and that in r even the next attribute has view r, only access paths of
the form nexti for i < the length of the list make a nonzero contribution.

It is now possible to include and justify in DListq a method that computes
a singly-linked copy M(DListq, toList) = () 1/0−−−→Listb. The effect shows the

cost of the additional object of type Nilb that is required. Similarly, a method
toDList() can be defined.

We remark that a circular singly-linked list can be constructed, with any fixed
potential unrelated to its length, e.g. of type Listb with an overall potential 0.

Related work A commonly found approach to bound memory usage is the
use of sized types as initially proposed by Hughes and Pareto [10]. However,
as pointed out by Vasconcelos [21], these systems have difficulties, e.g. with
algorithms that divide and merge their input, such as the list splitting found
in the popular quick-sort algorithm: the chosen pivot could be already mini-
mal/maximal, hence each list originating from the splitting has its size bounded
by n− 1. Merging these lists then results in an overall size of 2n− 1 instead of n
and thus to an exponential size for the resulting list of the quick-sort algorithm.
Our amortised analysis does not suffer from this flaw, as the potential can be
properly split and merged without this kind of loss of information.

A system employing sized types for an object-oriented language is presented
by Rinard et al. [3]. Their system also depends upon a deallocation primitive like
ours and in addition incorporates an alias control via usage aspects. We think it
is fair to say that [3] bundles together known techniques into a single system to
form an actual implementation that can deal with sizeable examples. Due to the
lack of worked out examples in the paper it is difficult to compare exactly the
strengths and weaknesses of loc. cit. and our approach. In any case, we feel that
the topic is important and new enough to justify several competing approaches
for some time until it will eventually be found out which one is better.

Another widespread approach is the use of a region based memory manage-
ment as initially proposed by Tofte and Talpin [19] and realized in the ML Kit
Compiler [18], which primarily aims at efficient memory usage rather than ob-
taining provable bounds. However, Berger et al. suggest in [1] that region based
approaches suffer from increased memory consumption due to retarded deallo-
cation if the programmer is unwilling to adjust his or her programming style to
suit the region approach and they propose a more generalised version of regions.

Yet another way to obtain quantity bounds on memory usage is abstract
interpretation and symbolic evaluation [20, 7, 8], which aim at identifying code
portions which do not affect the overall memory usage of a program. An ex-
haustive search of all paths of computation is then performed on the remaining
abstracted code parts. However, this exhaustive search might still lead to per-
formance problems as reported in [20], which then leads to further abstraction
jeopardising provable bounds in favour of estimates.

Finally, approaches based on formal specification and theorem proving are
beginning to emerge [14]. From our own experience the current state of theorem
provers does not suffice to automatically prove space assertions of the kind of
examples we are interested in and able to treat. However, it may be that future
progress in theorem proving will eventually make analyses like ours and indeed
most other program analyses redundant.

2 Featherweight Java with Update

Our formal model of Java, FJEU, is an extension of Featherweight Java (FJ) [11]
with attribute update, conditional and explicit deallocation. It is thus similar to
Flatt et al. Classic Java [5].

We refer to our full paper for a formal definition of its syntax and semantics
and content ourselves with an informal description here.

An FJEU program C is a partial finite map from class names to class defini-
tions, which we also refer to as class table. Each class table C implies a subtyping
relation <: among the class names in the standard way by inheritance. Through-
out the following sections we will consider a fixed (but arbitrary) class table C
for the ease of notation.

Each class consists of a super-class, a set of attributes (or fields) with their
types, and a set of methods with their types and bodies. A method body is an
expression in let normal form (nested expressions flattened out using a sequence
of let-definitions). Classes have only one implicit constructor that initialises all
attributes to a nil-value.

An access path is a list of attribute names, written a.b. · · · .c = p. It is
convenient to write A(C,p) for the class type reached by following the access
path p, i.e. A(C,p.b) = A(A(C,p) , a). The typing judgement of FJEU takes
the form Γ ` e : C where Γ is a finite partial mapping from identifiers to class
names. It is defined as a standard extension of the FJ typing rules and is omitted
for lack of space.

For reasons of convenience, field update differs slightly and interdefinably
from Java: the term x.a<-y evaluates to the value of x after the update rather
than y as in Java.

One new feature of FJEU is the presence of an explicit deallocation construct
free(x) that deallocates the object pointed to by x.

The typing judgement of FJEU takes the form Γ ` e : C where Γ is a finite
partial mapping from identifiers to class names. It is defined as a standard exten-
sion of the FJ typing rules. To illustrate FJEU we give here the corresponding
version of the list copy example from Sect. 1:

List copy(){ let re1 = new Cons in

let re2 = let elem = this.elem in re1.elem <- elem in

let re3 = let next = this.next in let nres = next.copy() in

re2.next <- nres in return re3; }

The dynamic semantics of FJEU is based on a global store (“heap”) mapping
locations to object records as usual. We use the judgement η, σ e ; v, τ shall
mean that the expression e evaluates successfully to the value v, beginning with
stack η, heap σ and ending with heap τ .

We also use the judgement η, σ
m
m′ e ; v, τ to mean that the evaluation

succeeds with an initial freelist of size at least m and leaves a freelist of size at
least m′ upon completion.

Both judgements are given as an inductive definition which increase and
decrease resource counters m,m′ as expected.

Unsuccessful evaluations such as null pointer access are not modelled explic-
itly in the semantics. For example, when e is free(null) then η, σ

m
m′ e ; v, τ

never holds. We assume that object creation new always returns a fresh loca-
tion never seen before (and increments m by the size of the allocated object).
Deallocation, on the other hand, overwrites an object record with a special value
(invalid). In addition, the counter m′ will be increased by the size of the deal-
located object. We allow pointers to such disposed objects (“stale pointers”),
however, any attempt to access a deallocated object via such a pointer leads to
unsuccessful termination just as a null pointer access.

This abstract and essentially storeless [15, 2, 4, 13] semantics abstracts away
from two important aspects of freelist based memory management: a) accidental
“reanimation” of stale pointers through recycling of previously issued locations
and b) fragmentation. Our strategy is to deal with those separately using known
or orthogonal approaches.

To counter the problem with recycled locations, we can employ indirect
pointers (symbolic handles) used by earlier implementations of the Sun JVM
for the compacting garbage collector. Alternatively, we can statically reject pro-
grams that might access stale pointers using the alias types by Walker and
Morrisett [22], or the bunched implication logic as practised by Ishtiaq and
O’Hearn [12]. For those programs, our abstract semantics coincides with a con-
crete implementation using a freelist.

In order to deal with fragmentation in the freelist model one has several
known possibilities that interact smoothly with the resource counting in the
abstract semantics: allocating all objects with the same size or as linked lists of
such blocks; maintaining several independent freelists for objects of various sizes
(a slight change to the typing rules is then required to prevent trading objects
of different sizes against each other), and, finally, compacting garbage collection.
In the last case, we would simply run a compacting garbage collection as soon
as the freelist does no longer contain a contiguous portion of the required size.
Of course, the total memory requirement would be twice the one predicted by
our analysis as usual with compacting garbage collection.

We find that the abstract operational semantics used here provides an ade-
quate modular interface between the resource analysis and concrete implemen-
tation issues that have been and are being treated elsewhere.

3 Definition of RAJA

We now extend FJEU to an annotated version, RAJA, (Resource Aware
JAva) as announced in the Introduction. A RAJA program is an anno-
tation of an FJEU class table C or more precisely a sextuple R =
(C ,V ,♦(·) ,Aget(· , ·) ,Aset(· , ·) ,M(· , ·)) specified as follows:

1. V is a possibly infinite set of views.
For each class C ∈ dom(C) and for each view r ∈ V the pair Cr is called
a RAJA class (or refined type). If Cr is a RAJA type then we denote by
|Cr| = C the underlying FJEU type C and by 〈〈Cr〉〉 = r its view. However,

we allow ourselves to omit these projections if it is clear from the context
whether the view or the FJEU class is required.

2. ♦(·) assigns to each RAJA class Cr a number ♦(Cr) ∈ D.
This number will be used to define the potential of a heap configuration under
a given static RAJA typing. For convenience, we extend the notation ♦(·)
to possibly undefined meta-expressions by putting ♦(〈expr〉) = 0 if 〈expr〉 is
undefined.

3. Aget(· , ·) and Aset(· , ·) assign to each RAJA class Cr and attribute a ∈ A(C)
two views q = Aget(Cr, a) and s = Aset(Cr, a).
The intention is that if D = A(C, a) is the FJEU type of attribute a in C
then the RAJA type Dq will be the type of an access to a, whereas the
(intendedly stronger) type Ds must be used when updating a. The stronger
typing is needed since an update will possibly affect several aliases.

4. M(· , ·) assigns to each RAJA class Cr and method m ∈ M(C) having method
type E1, . . . , Ej → E0 of arity j a j-ary polymorphic RAJA method type
M(Cr,m).
A j-ary polymorphic RAJA method type is a (possibly empty or infinite) set
of j-ary monomorphic RAJA method types. A j-ary monomorphic RAJA
method type consists of j + 1 views and two numbers p, q ∈ D, written
r1, . . . , rj

p/q−→r0.
The idea is that if m (of FJEU-type E1, . . . , Ej → E0) has (among others)
the monomorphic RAJA method type r1, . . . , rj

p/q−→r0 then it may be called
with arguments v1:Er1

1 , . . . , vj :E
rj

j , whose associated potential will be con-
sumed, as well as an additional potential of p. Upon successful completion
the return value will be of type Er0

0 hence carry an according potential. In
addition to this a potential of another q units will be gained.
We note at this point that if a variable is to be used more than once, e.g.,
as an argument to a method, then the different occurrences must be given
different types which are chosen such that the individual potentials assigned
to each occurrence add up to the total potential available.
We sometimes write Er1

1 , . . . , E
rj

j
p/q−→Er0

0 to denote an FJEU method type
combined with a corresponding monomorphic RAJA method type.

We will now define when such a RAJA-annotation of an FJEU class table is
indeed valid; in particular this will require that each method body is typable
with each of the monomorphic RAJA method types given in the annotation.

RAJA Subtyping Relation We intend to define a preorder r v s on views
as a largest fixpoint. If vvar⊆ V × V and C <: D in C and r, s ∈ V we define

Compat(vvar , C, D, r, s) ⇐⇒

♦(Cr) ≥ ♦(Ds) (3.1)

∀a ∈ A(D) .Aget(Cr, a) vvar Aget(Ds, a) (3.2)

∀a ∈ A(D) .Aset(Ds, a) vvar Aset(Cr, a) (3.3)
∀m ∈ M(D) .∀β ∈ M(Ds,m) .∃α ∈ M(Cr,m) . α vvar β (3.4)

where we extend vvar to monomorphic RAJA method types as follows: if α =
r1, . . . , rj

p/q−→r0 and β = s1, . . . , sj
t/u−→s0 then α vvar β is defined as p ≤ t and

q ≥ u and r0 vvar s0 and si vvar ri for i = 1, . . . j.
The subtyping relation r v s between views is now defined as the largest

relation v such that

r v s =⇒ Compat(v, C, C, r, s) for all C

It is easy to see that v is a preorder because if vvar is a preorder, so is
∀C.Compat(v, C, C, ·, ·). We extend subtyping to RAJA-classes by

Cr <: Ds ⇐⇒ C <: D and r v s (3.5)

It is possible to define a more fine-grained subtyping relation directly on
RAJA-classes, which would in particular give the subtyping Nil<c> <: Nil
required in the copying example. We choose not to do this here because it un-
duly clutters notation and clarity. A practical implementation should, however,
include this feature. Note that since both v and <: on FJEU are reflexive and
transitive so is <: on RAJA.

Definition 1 (Sharing Relation). We define the sharing relation between a
single view r and a multiset of views D written .(r |D) as the largest relation
., such that if .(r |D) then for all C ∈ C :

♦(Cr) ≥
∑
s∈D

♦(Cs) (3.6)

∀s ∈ D . r v s (3.7)

∀a ∈ dom(A(C)) ..
(
Aget(Cr, a)

∣∣Aget
(
CD, a

))
(3.8)

where Aget
(
CD, a

)
= {Aget(Cs, a) | s ∈ D}. When D = {s1, . . . , si} is a finite

multiset, we also write .(r |s1, . . . , si) for .(r |D). We remark that, it would be
possible to define .(· |·) on the level of RAJA-classes rather than views.

Lemma 1.

.(r |∅) (3.9)

.(r |{r}) (3.10)

.(r |D) ⇐⇒ ∀ finite E ⊂ D ..(r |E) (3.11)

.(r |D ∪ {s}) ∧ .(s |E) =⇒ .(r |D ∪ E) (3.12)
r′ v r ∧ s′ v s ∧ .(r |D ∪ {s′}) =⇒ .(r′ |D ∪ {s}) (3.13)

Typing RAJA We now give the formal definition of the RAJA-typing judge-
ment. RAJA-typing is defined in Curry style, i.e., the terms being typed contain
no RAJA-type annotations whatsoever. The intuitive meaning of the typing
judgement Γ

n
n′ e : Cr has already been given in the introduction.

∅ ♦(Cr) + Size(C)
0 new C : Cr

(♦New)

s = Aget(Cr, a) D = C.a

x:Cr 0
0 x.a : Ds

(♦Access)

C <: E

x:Er 0
0 (C)x : Cr

(♦Cast)

∅ 0
0 null : Cr

(♦Null)

x:Cr 0
0 x : Cr

(♦Var)

x:Cr 0
♦(Cr) + Size(C) free(x) : Er

(♦Free)

Aset(Cr, a) = s C.a = D

x:Cr, y:Ds 0
0 x.a<-y : Cr

(♦Update)

.(s |q1, q2) Γ, y:Dq1 , z:Dq2
n
n′ e : Cr

Γ, x:Ds n
n′ e[x/y, x/z] : Cr

(♦Share)
Γ1

n
n′ e1 : Ds Γ2, x:Ds n′

n′′ e2 : Cr

Γ1, Γ2
n
n′′ let x = e1 in e2 : Cr

(♦Let)(
Eq1

1 , . . . , E
qj

j
n/n′

−−→Eq0
0

)
∈ M(Cr,m)

x:Cr, y1:E
q1
1 , . . . , yj :E

qj

j
n
n′ x.m(y1, . . . , yj) : Eq0

0

(♦Invocation)

x ∈ Γ Γ
n
n′ e1 : Cr Γ

n
n′ e2 : Cr

Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Conditional)

n ≥ u n + u′ ≥ n′ + u Θ
u
u′ e : Ds ∀x ∈ Θ . Γx <: Θx Ds <: Cr

Γ
n
n′ e : Cr

(♦Waste)

Class Table A RAJA-program R = (C ,V ,♦(·) ,Aget(· , ·) ,Aset(· , ·) ,M(·, ·)) is
well-typed if for all C ∈ C and r ∈ V the following conditions are satisfied:

S(C) = D =⇒ Compat(v, C, D, r, r) (3.14)
∀a ∈ A(C) .Aset(Cr, a) v Aget(Cr, a) (3.15)

∀m ∈ M(C) .∀α ∈ M(Cr,m) .∃q, s ∈ V ..(r |q, s) ∧

this:Cq, x1:Er1
1 , . . . , xj :E

rj

j

n + ♦(Cs)

n′ Mbody(C,m) : Er0
0

where C.m = E1, . . . , Ej → E0 and α = r1, . . . , rj
n/n′

−−→r0

(3.16)

4 Main Result

Our main result involves the following concepts which we explain informally
here; the full version contains formal definitions and motivations. We write
bbb(v:r).pcccstatσ for the view on the object reached from v (of view r) via access
path p when accessed in this way. For example, if v points to a doubly-linked
list of length 2 in σ then bbb(v:q).next.nextcccstatσ = q.

We write Φσ(v : r) and Φσ(η : Γ) for the potentials of the data structures
reachable from v, resp. η when viewed through r, resp., Γ . For example,
Φσ(v : r) =

∑
p ♦(Ds), where D is the dynamic type of the record reached from

v in σ via p, whereas s = bbb(v:r).pcccstatσ .

Finally, if Γ is a RAJA typing context with underlying FJEU context |Γ |,
we write σ � η : Γ to mean that σ |= η : |Γ | and, moreover, for each location `
reachable from η there exists a view r (its proto-view) such that .(r |Vσ,η,Γ (`))
where Vσ,η,Γ (`) is the multiset consisting of all assumable views on location ` by
σ, η, Γ , formally, Vσ,η,Γ (`) = {bbb(ηx:〈〈Γx〉〉).pcccstatσ | x ∈ Γ, Jηx.pKσ = `}.

This definition is a crucial invariant needed in the proof of the main result;
it does not appear in the corollary intended for end users.

Theorem 1. Fix a well-typed RAJA program R. If

Γ
n
n′ e : Cr (4.1)

η, σ ◦ e ; v, τ (4.2)

σ � η : (Γ,∆) (4.3)

then

η, σ
n + Φσ(η : Γ) + Φσ(η : ∆)

n′ + Φτ(v : r) + Φτ(η : ∆)
◦ e ; v, τ (4.1)

τ � η[xres 7→ v] : (∆, xres :Cr) (4.2)

where xres is assumed to be an unused auxiliary variable, i.e. xres /∈ Γ,∆. Note
that (4.3) implies dom(Γ) ∩ dom(∆) = ∅ by definition of notation.

Proof. (Sketch) The proof is by induction on the operational semantics and a
subordinate induction on typing derivations. Several of the cases present inter-
esting difficulties. To give a flavour of the proof we sketch the case of field update
here where we essentially have to show that a field update leaves the total poten-
tial unchanged and that newly created aliases admit a “proto-view”. We describe
the crucial observation to give a flavour of the proof. Suppose that at runtime
the update is `.a := v, ` being a location, a a field, v a value. For locations
`1, `2 let P (`1, `2) stand for access paths from `1 to `2 and Q(`1, `2 stand for the
subset of P (`1, `2) consisting of those paths that do not go through `.a and are
thus unaffected by the update. After the update we have

P (`1, `2) = Q(`1, `2) + Q(`1, `)(aQ(v, `))∗aQ(v, `2)

since any access path either does not meet the updated location at all or goes
through it a finite number of times. Since the right hand side of this identity
comprises paths that are not affected by the update, information about it can
be obtained from the assumptions that describe the situation before the update.
A number of technical lemmas about the sharing relation and potentials are of
course needed to flesh this out.

The following corollary is a direct consequence of the main result and it is in this
form that we intend to use it. The apparently clumsy form of the main result is
needed in order to enable an inductive proof.

Corollary 1. Suppose that C is an FJEU program containing (in Java nota-
tion) a class List of singly-linked lists with boolean entries, a class C containing
a method void C.main(List args), and arbitrary other classes and methods.

Suppose furthermore, that there exists a RAJA-annotation of this program
containing a view a where ♦(Lista) = k ∈ N and Aget(Lista, next) = a then
evaluating C.main(args) in a heap where args points to a linked list of length l
requires at most kl memory cells.

5 Conclusion

We have presented a generic method for using potentials in the sense of amortised
complexity to count memory allocations and deallocations. Our method allows
for input dependent analysis without explicitly manipulating size expressions.
This sets it apart against more direct methods based on sized types. We have
stated and proved a nontrivial soundness property which shows that our typing
rules for sharing correctly account for aliased and even circular data.

Inference We have not studied the problem of view inference and not even algo-
rithmic type checking since these two tasks are independent of soundness which
was our main concern here. But of course inference and automatic type check-
ing are of paramount importance for the viability of our method. We therefore
briefly comment on how we plan to attack these issues.

First, we remark that if the structure of the views, i.e., the views without their
potential annotations are known, the latter quantities can be efficiently found
by LP-solving as was done in the precursor of this work [9]. Indeed, the system
presented there can be faithfully embedded into RAJA and for this fragment
automatic inference is unproblematic.

Likewise, the intermediate views that do not appear in class tables but only
within method bodies typically take the form of fragments of already declared
views in the sense that some fields are set to a zero view like n in Sect. 1. We are
confident that these views can be generated automatically and on the fly during
algorithmic type checking for example by reformulating the sharing rule in an
algorithmic fashion.

A simple kind of view polymorphism should also be within reach if one applies
the generic type and effect discipline [16] to our system.

Going beyond these low-hanging fruit will probably require the isolation of
several fragments or high-level systems built on top of RAJA, supporting for
example particular styles or patterns of programming.

Lastly, we mention that the possible access paths emanating from each
class define an infinite regular tree, e.g., the tree consisting of the paths in
next∗(elem ∪ {ε}) in the case of Cons. The set of views on a class in a (finite!)
RAJA program defines a regular tiling of that tree and can perhaps be found
using automata- or language-theoretic methods.

Extensions Our focusing on heap space usage was a rather arbitrary choice. We
believe that by slight modifications we can use the amortised method for other
quantitative resources such as stack size, multiple freelists, number of open files,
etc., in a similar fashion.

Limitations Rule ♦Update contains a source of possible over-approximation
because it does not restitute the potential contained in the overwritten data.
This can lead to sound but not typable examples the simplest of which is as
follows: if a is an object with a field f whose get- and set-types differ then
a.f<-a.f is not typable yet obviously sound since its effect is zero.

Another limitation of the system stems from the fact that object types do
not change after a method invocation. This is mediated by the linear formula-
tion of the type system: after a call x.m() the reference x with its type is “used
up”; a further invocation of a method on the object referenced by x can only
happen through a prior invocation of ♦Share and hence in general with a dif-
ferent type. Nevertheless, exploring type change after method invocation could
be worthwhile.

We also note that our method estimates resource usage as a function of the
input. Thus, programs whose resource usage depends on other parameters cannot
be analysed. A concrete example is the numerical solution of a boundary value
problem by solving successively larger and larger linear systems of equations.

Other limitations stem from the type inference problem. While it is in many
cases possible to find a typing it might be difficult to come up with an inference
scheme that encompasses those. On a positive side we note that the earlier
system by the authors [9] can be faithfully mapped into the present system.

Acknowledgements We thank Olha Shkaravska for pointing out the relation-
ship of our previous work [9] with amortised complexity. We had been teaching
the latter for years but failed to see the connection. We also thank Peter O’Hearn
for a long and lively phone conversation on the topic of operational semantics
of “free”. The authors acknowledge financial support by the GKLI Munich and
the EU FET-IST projects IST-510255 (EmBounded), IST-15905 (Mobius), IST-
2001-33149 (MRG).

References

1. E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom memory
allocation. In Proceedings of the Conference on Object-Oriented Programming:
Systems, Languages, and Applications (OOPSLA), 2002.

2. M. Bozga, R. Iosif, and Y. Laknech. Storeless semantics and alias logic. In Proceed-
ings of the 2003 ACM SIGPLAN workshop on Partial evaluation and semantics-
based program manipulation (PEPM), pages 55–65. ACM, 2003.

3. W.-N. Chin, H. H. Nguyen, S. Qin, and M. Rinard. Memory usage verification for
oo programs. In The 12th International Static Analysis Symposium (SAS). LNCS,
Sep 2005.

4. A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting.
ACM SIGPLAN Notices, 29(6):230–241, 1994.

5. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 171–183, 1998.

6. A. Galland and M. Baudet. Controlling and Optimizing the Usage of One Resource.
In A. Ohori, editor, 1st Asian Symposium on Programming Languages and Systems
(APLAS), volume 2895 of Lecture Notes in Computer Science, pages 195–211,
Beijing, China, Nov. 27-29, 2003. Springer-Verlag.

7. G. Gómez and Y. A. Liu. Automatic time-bound analysis for a higher-order lan-
guage. In Proceedings of the 2002 ACM SIGPLAN workshop on Partial evaluation
and semantics-based program manipulation, pages 75–86. ACM Press, 2002.

8. B. Grobauer. Topics in Semantics-based Program Manipulation. PhD thesis,
BRICS Aarhus, 2001.

9. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order func-
tional programs. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 185–197. ACM, 2003.

10. J. Hughes and L. Pareto. Recursion and dynamic data structures in bounded
space: towards embedded ML programming. In Proc. International Conference on
Functional Programming (ICFP). Paris, September 1999., pages 70–81, 1999.

11. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. In L. Meissner, editor, Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA), volume 34(10), pages 132–146, N.Y., 1999.

12. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 14–26. ACM, 2001.

13. H. Jonkers. Abstract storage structures. In J. W. de Bakker and J. C. van Vliet,
editors, Algorithmic Languages, pages 321–343. IFIP, North Holland, 1981.

14. J. Krone, W. F. Ogden, and M. Sitaraman. Modular verification of performance
constraints. Technical report, Dep. of Comp. Sci., Clemson Univeristy, May 2003.

15. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for proce-
dure local heaps and its abstractions. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages
296–309, New York, NY, USA, 2005. ACM Press.

16. J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. J.
Funct. Program., 2(3):245–271, 1992.

17. R. E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods, 6(2):306–318, 1985.

18. M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. Olesen, and P. Sestoft. Pro-
gramming with regions in the ml kit, April 2002. IT University of Copenhagen
http://www.itu.dk/research/mlkit/.

19. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997.

20. L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Automatic accurate live mem-
ory analysis for garbage-collected languages. In Proceedings of The Workshop on
Languages, Compilers, and Tools for Embedded Systems (LCTES). ACM, 2001.

21. P. Vasconcelos. Space Cost Modeling for Concurrent Resource Sensitive Systems.
PhD thesis, School of Comp. Sci., University of St Andrews, Scotland, to appear.

22. D. Walker and G. Morrisett. Alias types for recursive data structures. Lecture
Notes in Computer Science, 2071:177+, 2001.

